
Listing Dense Subgraphs in Small Memory

Patricio Pinto, Nataly Cruces and Cecilia Hernández

Department of Computer Science

University of Concepcion

Concepcion, Chile

Email: {patriciopinto,natalycruces,cecihernandez}@udec.cl

Abstract—Listing relevant patterns from graphs is becoming
increasingly challenging as Web and social graphs are growing
in size at a great rate. This scenario requires to process
information more efficiently, including the need of processing
data that cannot fit in main memory. Typical approaches
for processing data using limited main memory include the
streaming and external memory models. This paper addresses
the problem of listing dense subgraphs from Web and social
graphs using little memory.

We propose an external memory algorithm based on K-way
merge-sort for clustering and reordering input graphs. We also
propose mining heuristics that work well with different stream
orders such as URL, BFS, and cluster-based. Our experimental
evaluation shows that on Web graphs, in comparison with the
in-memory algorithm, the streaming mining heuristic is able
to find between 70 and 96% of edges participating in dense
subgraphs, uses only between 17 and 25% of the memory, and
running times are between 34 and 65%. We further consider
an application that uses these dense subgraphs for compressing
Web graphs with a representation that enables querying the
collection of subgraphs for pattern recovery and basic statistics
without decompression.

Keywords-Web Graphs, Graph Pattern Listing, Streaming
Algorithms, External Memory Algorithms

I. INTRODUCTION

Discovering patterns from graphs is important for many

applications including the Web, social networks, and biolog-

ical applications among many others. For instance, patterns

found in Web graphs and social networks are used to

discover link spams and in ranking algorithms for searching

the Web. In biological networks, graphs patterns, such as

cliques in protein structures are used for modeling and

predictions [23]. However, these graphs are growing at an

incredible rate. For instance, the Web consists of more than

a trillion of pages, increasing in number every day 1. Social

networks are also growing very fast, Facebook is over 1.1

billions active users and twitter was over 500 millions in

July, 2013 2.

At such growth rates comes a need to process that in-

formation more efficiently, including the need of processing

data that do not fit in main memory. Typical approaches

using limited memory include the streaming and external

memory models. In the streaming model data is processed

1http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
2http://www.statisticbrain.com/twitter-statistics/

sequentially in one or a few passes using limited memory,

whereas in the external memory model the idea is to keep

data in secondary storage and bring data selectively to main

memory to improve I/O performance.

This paper addresses the problem of finding and listing

graph patterns based on dense subgraphs from large graphs.

We propose an external memory algorithm based on K-way

merge-sort for clustering and reordering input graphs. We

also propose streaming mining heuristics which work well

with different stream orders such as URL, BFS, and cluster-

based. We provide experimental evaluation that shows that

our external memory algorithm reduces memory usage pre-

serving the quality of the in-memory solution. We also

provide a streaming mining heuristic that uses little memory

and achieves good quality for stream orders that exploit

locality of reference. We further consider an application for

compressing Web graphs and social networks that is based

on the listed dense subgraphs. The compressed structure not

only allows the recovery of the collection of dense subgraphs

but also enables basic queries such as obtaining the number

and average size of cliques and bicliques as well as other

dense subgraphs.

II. RELATED WORK

Finding relevant patterns on graphs have been addressed

for some time in different applications. In the context of the

Web, Donato et al. [9] used several web mining techniques to

discover the structure and evolution of the Web graph, such

as weakly and strongly connected components, depth-first

and breath-first search. Other proposals use graph algorithms

to detect spam farms [22], [12]. Saito et al. [22] present a

method for spam detection based on classical graph algo-

rithms such as identification of weak and strong components,

maximal clique enumeration and minimum cuts. Gibson

et al. [12] propose large dense subgraph extraction as a

primitive for spam detection. Their algorithm used efficient

heuristics based on the idea of shingles [4].

The streaming model is an important model of computa-

tion for processing massive data sets [18], [19]. The most

restrictive streaming model allows O(polylog n) space

and a single or a few passes over the data. To address

graph problems in the streaming model, several more relaxed

models have been proposed, such as the semi-streaming, w-

stream and stream-sort models. The semi-streaming model

allows one or a few sequential read-only passes through the

graph, but in addition allows O(n polylog n) space, which

means that vertices and some information about them can

be stored, but not all the edges [10], [19], [27]. The w-

stream model is similar, but it allows temporary streams to

read/write on disk [21], [27]; and the stream-sort model,

which not only creates intermediate streams but also sorts

them in a single pass [2], [27].

Feigenbaum et al. [10] propose semi-streaming algorithms

for finding approximations to the unweighted maximum

dense subgraph matching problem with an approximation

ratio 2/3− ǫ in O(log 1/ǫ
ǫ) passes using O(n log n) memory,

where 0 < ǫ < 1/3. The proposed algorithm is based on

first finding a bipartition, then using a matching of the graph,

and then finding a set of simultaneous length-3 augmenting

paths. The maximum dense subgraph matching algorithm

increases the size of the matching by repeatedly finding a

set of simultaneously length-3 augmenting paths. They also

provide a semi-streaming algorithm for finding a weighted

matching. They use edge weights of edges in the stream and

compare them with the sum of the weights of the edges in

the current matching M . Demetrescu et al. [8] show that the

single-source shortest path problem in directed graphs can be

solved in the w-stream model in O(n log3/2 n)/
√
s) passes.

For undirected connectivity they propose an O(n log n)/s
passes algorithm.

Aggarwal et al. [1] propose a model for dense pattern

mining using summarization of graph streams. They define

dense patterns based on node-affinity and edge-density of

patterns in a general way. Their approach removes small

and large adjacency lists a priori because the dense pattern

mining definition does not consider them as relevant. On

the other hand, running time is in the order of thousand

processed edges per second. More recently, Sariyüce et al.

[24] propose incremental streaming algorithms for k-core

decomposition, where a k-core is defined as a maximal

connected subgraph in which every vertex is connected to at

least k nodes in the subgraph. The core decomposition of a

graph is the problem of finding the set of maximum k-cores

of all vertices in the graph. Thus, an algorithm to find k-

cores of a graph removes all vertices with degree less than k
with their corresponding adjacency edges. The authors pro-

pose streaming algorithms supporting insertion and removal

of edges for dynamic networks. The algorithms require

reordering unprocessed vertices in subgraphs. Stanton and

Kliot [25] address the problem of distributed graph partition-

ing using streaming for directed or undirected graphs. They

evaluate different heuristics performed on various stream

orders. They find that a greedy linear deterministic algorithm

works best together with BFS stream order.

External memory algorithms define memory layouts that

are suitable for graph algorithms reducing random accesses

to disk. This model has been used for different basic

problems, such as scanning, sorting, permuting, and other

graph algorithms such as traversal algorithms and graph

connectivity[26], [17]. Cheng et al. [7] propose a external

memory algorithm for the maximal clique enumeration

problem on undirected graphs. The algorithm is based on

defining a partition-based strategy that avoids random ac-

cess. Their algorithm I/O complexity is O(k ·scan(|V +E|),
O(kT) CPU time, and O(M) memory space, where k =

min{ |V |(φdeg)
2

M , |V |}, T is the CPU time complexity of the

in-memory algorithm, M is the memory size, and φdeg is

the maximum vertex degree.

III. PROBLEM DEFINITION

Let G(V,E) a directed graph, with n = |V | vertices and

m = |E| edges. We define the neighbors of a vertex v as

adj(v) = {u : (v, u) ∈ E}. We assume that input graphs use

the adjacency list representation, where vertices have unique

ids and each adjacency list describes the set of neighbors of

a vertex.

Our dense subgraph pattern is described in Definition 1.

This definition is based on a complete bipartite graph pattern

with an important difference. We add self-loops in each

vertex adjacency list, that is, for each vertex v we add edge

(v, v) in its adjacency list. This allows us to discover cliques

as well as complete bipartite cliques. Similar patterns are

defined by Kumar [14], where they only consider complete

bipartite graphs.

Definition 1: A Dense subgraph is based on a bipartite

pattern with set overlap H(S,C) of G = (V,E) is a graph

G′(S ∪ C, S × C), where S,C ⊆ V .

Note that Definition 1 not only includes cliques (S = C)

and bicliques (S∩C = ∅), but also more general subgraphs.

The problem we want to solve is given a graph G, discover

dense subgraphs and list them using small memory. We do

not aim for an exact solution, but rather for fast and memory

efficient heuristics. We focus on large graphs such as Web

and social networks, where n << m. These graphs are

power-law and present high similarity of adjacency lists and

locality of reference. In order to design memory efficient

algorithms, we consider the external memory and streaming

models. In the context of the external memory model, we

use the standard I/O complexity notation [26] in the analysis:

M is the main memory size, B is the disk block size,

scan(N) = Θ(NB) I/O, and sort(N) = Θ(NB logM
B

N
B).

To use the streaming model, we consider an input graph

stream as a stream of adjacency lists as a sequence X =
{v0 : adj(v0), v1 : adj(v1), ..., vn : adj(vn)}.

IV. HEURISTICS AND ALGORITHMS

We first discuss the algorithm that we use as reference (in-

memory) algorithm (Algorithm 1). We have used it success-

fully for discovering graph patterns for compressing Web

and social graphs [15], [16]. The Algorithm 1 is iterative,

and each iteration consists of a clustering and a mining

phase. The clustering phase consists of grouping similar

adjacency lists (lists that have similar neighbors) and the

mining phase processes the information on each cluster in

order to discover the most relevant dense subgraphs, and

then extract them from the graph. The next iteration takes

as input the remaining graph given by the previous iteration.

The clustering algorithm is based on finding similar adja-

cency lists using min-hashing similarity [4]. The algorithm

represents each adjacency list with P fingerprints (hash

values), generating a matrix of fingerprints of |V | rows and

P columns. Then it traverses the matrix column-wise. At

stage i the matrix rows are sorted lexicographically by their

first i column values, and the algorithm groups the rows with

the same fingerprints in columns 1 to i, with 0 < i ≤ P .

When the number of rows in a group falls below a small

number (threshold), it is converted into a cluster formed

by the vertexes corresponding to the rows. As shown on a

previous work, it is sufficient to use P = 2 [16] for achieving

good results.

During the second phase a mining algorithm is applied on

each cluster to discover and extract dense subgraphs. This

algorithm first computes frequencies of the nodes mentioned

in the adjacency lists of a cluster, and sorts the list by

decreasing frequency. Then, each list is inserted into a prefix

tree (Definition 2), using a function cost based on the size

of dense subgraphs (Definition 3).

Definition 2: We denote a prefix tree as T = (N,A),
where N is the set of nodes in the tree and a = (nx, ny) ∈
A, where nx, ny ∈ N and nx is the parent of ny . We define

a branch b as the path from the root to a leaf. Each node

ni in a branch has a label and a set S. The label in the

node represents a vertex in an adjacency list and the set S
consists of all the vertices that share the adjacency list from

the root to the ni in the branch. We define a set C of a

node ni as the set of all the node labels from the root to ni.

The prefix tree allows different nodes in the tree to have the

same label.

Definition 3: We consider dense subgraphs whose sizes

follow the function f(T) = max{|Si| · |Ci|} on different

branches of the tree, with |Si| > 1 and |Ci| > 1.

V. EXTERNAL MEMORY ALGORITHM

The K-way external merge sort works in two phases [11].

The first is a “run formation” phase, where N input data

are streamed in main memory using memory pieces of size

M . Each piece of size M is sorted, having at the end of the

phase N/M sorted runs. The second phase is the “merge

phase”, where groups of K runs are merged together. Runs

in the merge phase are sorted using buffers of size B. The

merge phase might take more than one pass; in each pass

one buffer of size B from each run is maintained in main

memory and one buffer is used for streaming out sorted runs.

Sorting K runs is done using a Heap data structure. Since

Algorithm 1 In-memory algorithm for listing dense sub-

graphs.

Input: G: input graph, P : number of fingerprints,

threshold: threshold for clustering, Iters:iterations,

size thr: minimum size to list (|S| · |C|).
Output: Output: dscol: Collection of dense subgraphs.

1: dscol← ∅
2: for (i = 1 to Iters) do

3: Matrix M ← computeF ingerprints(G,P)
4: Clusters C ← getClusters(M,G)
5: for (c ∈ C) do

6: ds← mine(G, c, size thr)
7: dscol.add(ds)
8: end for

9: end for

the memory usage of the algorithm is bound to M and the

buffer size is B, K = M
B − 1 buffers are used for input and

one for output. The overall I/O performance of the algorithm

is O(N/B logM/B N/M), which is a sort(N) primitive in

the external memory model.

The external memory algorithm we propose uses the K-

way external merge-sort in two different ways: One for

sorting the matrix of nP hashes, for the clustering phase and

the other for reordering the input graph by cluster id. During

the clustering phase, the algorithm computes hashes and

sorts them by columns using external merge-sort; clusters

ids are defined based on the conditions of pairs of hashes

(given that P = 2). The vertices ids of each cluster are

used for sorting the input graph based on cluster ids. In

summary, this external memory algorithm requires two ex-

ternal sorts, one over the matrix nP and one for permuting

the graph based on vertex id. Therefore, the algorithm is

O(sort(2n) + sort(n + m)), that is, O(sort(n + m)) I/O

complexity. This complexity does not consider the mining

part of the algorithm.

For the mining phase, the reordered graph is scanned by

cluster. We use whatever main memory requires each cluster,

which requires at most O(Vc + Ec) time, where Vc is the

number of vertices in the cluster and Ec the number of

edges. Such external algorithm is given in Algorithm 2.

VI. STREAMING ALGORITHMS AND STREAM ORDERS

The main idea of our streaming heuristics is to take

advantage of the locality of reference found on Web and

social graphs. The question we want to answer is whether we

can apply a mining algorithm reading a sequential window

of neighbors (w) from the input graph stream. We based

the heuristic on the mining algorithm we use in the second

phase of the in-memory algorithm. Our streaming algorithm

belongs to the w-stream model. The idea of this model is

at each pass one input stream is read, one output stream is

written, and data items have to be processed using limited

Algorithm 2 External memory algorithm based on K-way

merge sort for listing dense subgraphs.

Input: G, P , threshold, Iters, size thr, M , B, K.

Output: Output: dscol: Collection of dense subgraphs.

1: dscol← ∅
2: msFinger.init(M,B,K), msPerm.init(M,B,K)
3: for (i← 1 to Iters) do

4: for ((v, adj) ∈ G) do

5: fingers← computeF ingerprints(v, adj, P)
6: msFinger.add(v, fingers)
7: end for

8: sortF ingersF ile← msFinger.extsort()
9: cls← msFinger.getClusters(sortF ingersF ile)

10: permGpFile← msPerm.extperm(M,B,K, cls)
11: for (cluster ∈ permGpFile) do

12: ds← mine(cluster, size thr)
13: dscol.add(ds)
14: end for

15: end for

space. The output stream produced at pass i is the input

stream at pass i+ 1.

Our hypothesis is that if the graph stream has locality of

reference, then we can detect different clusters implicitly just

sorting the adjacency list by decreasing neighbor frequency

and then building a prefix tree every time we find a dif-

ferent frequent first neighbor in any of the adjacency lists.

Therefore, after sorting the adjacency lists by decreasing

frequency we define a forest of prefix trees, where the root

of each prefix tree serves as the identification of clusters in

the window. We define a forest of prefix trees in Definition

4.

Definition 4: We denote FT a prefix tree forest as a col-

lection of prefix trees, FT = (r1, T1), (r2, T2), ..., (rk, Tk),
where ri is the node id of the root of prefix tree Ti, for any

0 < i < k, with k prefix trees in a window w.

Figure 1 shows an example that illustrates the algorithm.

The example shows a window, w, of an input graph. Fig-

ure 1-(a) shows the frequency count of each of the neighbors

in the adjacency lists showed in Figure 1-(b).

Figure 1-(b) also shows the same graph partition sorted

by decreasing neighbor frequency, where we can observe

that two clusters are identified. With this information, it is

possible to build two prefix trees, where the root of the first

is the node 2 and the root of the second is 14 (Figure 1-

(c)). Figure 1-(c) also shows the identified dense subgraphs,

where the first is S = (1, 2, 3, 5), C = (2, 3, 4), and the

second is S = (11, 12, 13), C = (14, 18, 16). Finally,

Figure 1-(d) shows our application which compresses the

listed dense subgraphs by using a compact representation

that is explained in Section VIII. This representation has

been previously used for compressing Web and social graphs

[15].

Figure 1. Streaming heuristic example. (a) shows the frequency of the
neighbors of the adjacency list showed in (b). (c) shows the forest of
prefix trees associated with the adjacency lists sorted by neighbor frequency
described in Algorithm 3. (d) shows the compression application which
defines the compact representation of the dense subgraphs described in
Section VIII.

Algorithm 3 shows the mining algorithm considering a

window, w, of edges and a forest of prefix trees.

A. Stream Orders

We consider different stream orders that are good can-

didates for providing locality [3] and are easy to compute.

Specifically, we use the following stream orders:

• URL: URL-based node ordering. In the case of Web

graphs, it consists of ordering URLs lexicographically.

• BFS: This node ordering is given by traversing the

graph using breadth-first search algorithm starting at

a random node.

• CLLP: This node ordering is based on Layered Label

Propagation (LLP) clustering described by Boldi et al.

[3].

• CHASH: This is not a node ordering in a strict sense,

but rather a cluster-based adjacency list ordering. The

idea is to group together adjacency lists based on their

similarity using the algorithm described in section IV.

Algorithm 3 Streaming algorithm (FT) for listing dense

subgraphs.

Input: X:graph stream, w: window of neighbors, Iters,

size thr.

Output: Output: dscol: Collection of dense subgraphs.

1: for (i← 1 to Iters) do

2: while (Xi 6= ∅) do

3: sortedadjs = readWSortFreq(w,Xi)
4: Forest FT ← ∅
5: Tree T
6: for (adju ∈ sortedadjs) do

7: first← getF irstElem(adju)
8: T ← FT.find(first)
9: if (T) then

10: T.insert(adju)
11: else

12: T = createT (adju)
13: FT.add(T)
14: end if

15: end for

16: for (T ∈ FT) do

17: ds← extractDS(T, size thr)
18: dscol.add(ds)
19: end for

20: end while

21: end for

VII. EXPERIMENTAL EVALUATION

We implemented our algorithms in C++. We used a Linux

PC with a processor Intel Xeon at 2.4GHz, with 64 GB

of RAM and 12 MB of cache. We ran each experiment

ten times and considered mean values since the standard

deviation was not significant.

We used snapshots of Web graphs and social networks

displayed in Table I, which are available by the WebGraph

framework project at http://law.dsi.unimi.it. All the algo-

rithms are set to list dense subgraphs with size thr =
|S| · |C| ≥ 6 to avoid finding dense subgraphs too small that

do not contribute greatly in our compression application.

We executed the external memory algorithm described in

Algorithm 2, setting M , B, and K so that the sort is done

in two passes. We use the URL and CLLP orders provided

by the WebGraph project, and compute BFS and CHASH

orders. We also consider w of 500, 1000, 2000, and 5000

in the streaming algorithms, since greater values for w did

not improve results.

We consider the in-memory algorithm as a refer-

ence (shown in Algorithm 1), external memory algorithm

(Extmem) (shown in Algorithm 2), the streaming algorithm

using only one prefix tree per window (T) and the streaming

algorithm considering a forest of prefix trees (FT) described

in Algorithm 3.

Dataset |V | |E|

Eu-2005 862,664 19,235,140

Indochina-2004 7,414,866 194,109,311

Uk-2002 18,520,486 298,113,762

Arabic-2005 22,744,080 639,999,458

Dblp-2011 986,324 6,707,236

LiveJournal-2008 5,363,260 79,023,142

Table I
MAIN STATISTICS OF THE WEB GRAPHS AND SOCIAL NETWORKS.

We examine whether the streaming heuristics are effective

for finding and listing dense subgraphs for Web and social

graphs. We measure the effectiveness in terms of the number

of edges of the graph that participate in dense subgraphs and

the required memory and CPU time. We compare streaming

algorithms (T) and (FT) using the stream orders presented

in section VI-A.

Figure 2 shows how well the streaming algorithms behave

in terms of the number of edges participating in dense

subgraphs with respect to the time they need to list the dense

subgraphs for Web graphs. We observe that there is good

locality of reference that allows the FT heuristic to obtain

a much better effectiveness that using just one prefix tree

(T) per window. We also observe that using a window size

w = 5000 (right charts) instead of w = 1000 allows us

to capture more edges in all dense subgraphs using almost

the same CPU time. We also observe that the FT algorithm

only needs about 5 iterations to capture the dense subgraphs.

The best results in terms of edges in dense subgraphs are

achieved with CLLP and CHASH orders on Web graphs.

Figure 3 shows that in the case of social networks the stream

order has more impact than in Web graphs, where the CLLP

order exploits locality of reference better than the other

stream orders. The figure also shows that social networks

need more iterations than Web graphs to list more dense

subgraphs.

Second, Table II shows performance ratios in terms of

memory usage, total number of edges in dense subgraphs,

and CPU time with respect to the in-memory algorithm for

5 iterations on Web graphs and social networks. In addition,

Table II shows the Speedup, which is defined as the ratio

between the Edges/secs of our streaming algorithm and the

Edges/secs of the in-memory algorithm. We compare our

results using the FT streaming algorithm over the stream

orders URL, BFS, CLLP and CHASH and our external

memory algorithm with respect to the in-memory algorithm

given in Algorithm 1. Memory ratio is the ratio between the

amount of memory used by the corresponding algorithm and

the in-memory algorithm. Edge ratio is the ratio between

the number of edges participating in the extracted dense

subgraphs obtained by the algorithm and the number of

edges achieved using the in-memory algorithm, and Time

ratio is the ratio between the execution time of the corre-

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 9
e

+
0

6

 1
e

+
0

7

 1
.1

e
+

0
7

 1
.2

e
+

0
7

 1
.3

e
+

0
7

 1
.4

e
+

0
7

 1
.5

e
+

0
7

T
im

e
(s

)

Edges in dense subgraphs

Eu-2005

URL-FT-1000
BFS-FT-1000

CLLP-FT-1000

CHash-FT-1000
URL-T-1000
BFS-T-1000

CLLP-T-1000
CHash-T-1000

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 7
e

+
0

6

 8
e

+
0

6

 9
e

+
0

6

 1
e

+
0

7

 1
.1

e
+

0
7

 1
.2

e
+

0
7

 1
.3

e
+

0
7

 1
.4

e
+

0
7

 1
.5

e
+

0
7

 1
.6

e
+

0
7

T
im

e
(s

)

Edges in dense subgraphs

Eu-2005

URL-FT-5000
BFS-FT-5000

CLLP-FT-5000

CHash-FT-5000
URL-T-5000
BFS-T-5000

CLLP-T-5000
CHash-T-5000

 100

 200

 300

 400

 500

 600

 700

 9
e

+
0

7

 9
.5

e
+

0
7

 1
e

+
0

8

 1
.0

5
e

+
0

8

 1
.1

e
+

0
8

 1
.1

5
e

+
0

8

 1
.2

e
+

0
8

 1
.2

5
e

+
0

8

T
im

e
(s

)

Edges in dense subgraphs

Indochina-2004

URL-FT-1000
BFS-FT-1000

CLLP-FT-1000

CHash-FT-1000
URL-T-1000
BFS-T-1000

CLLP-T-1000
CHash-T-1000

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 8
e

+
0

7

 8
.5

e
+

0
7

 9
e

+
0

7

 9
.5

e
+

0
7

 1
e

+
0

8

 1
.0

5
e

+
0

8

 1
.1

e
+

0
8

 1
.1

5
e

+
0

8

 1
.2

e
+

0
8

 1
.2

5
e

+
0

8

 1
.3

e
+

0
8

T
im

e
(s

)

Edges in dense subgraphs

Indochina-2004

URL-FT-5000
BFS-FT-5000

CLLP-FT-5000

CHash-FT-5000
URL-T-5000
BFS-T-5000

CLLP-T-5000
CHash-T-5000

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1
.8

e
+

0
8

 1
.9

e
+

0
8

 2
e

+
0

8

 2
.1

e
+

0
8

 2
.2

e
+

0
8

 2
.3

e
+

0
8

 2
.4

e
+

0
8

 2
.5

e
+

0
8

 2
.6

e
+

0
8

T
im

e
(s

)

Edges in dense subgraphs

Uk-2002

URL-FT-1000
BFS-FT-1000

CLLP-FT-1000

CHash-FT-1000
URL-T-1000
BFS-T-1000

CLLP-T-1000
CHash-T-1000

 0

 500

 1000

 1500

 2000

 2500

 1
.2

e
+

0
8

 1
.4

e
+

0
8

 1
.6

e
+

0
8

 1
.8

e
+

0
8

 2
e

+
0

8

 2
.2

e
+

0
8

 2
.4

e
+

0
8

 2
.6

e
+

0
8

T
im

e
(s

)

Edges in dense subgraphs

Uk-2002

URL-FT-5000
BFS-FT-5000

CLLP-FT-5000

CHash-FT-5000
URL-T-5000
BFS-T-5000

CLLP-T-5000
CHash-T-5000

 500

 1000

 1500

 2000

 2500

 3000

 3500

 3
.9

e
+

0
8

 4
e

+
0

8

 4
.1

e
+

0
8

 4
.2

e
+

0
8

 4
.3

e
+

0
8

 4
.4

e
+

0
8

 4
.5

e
+

0
8

 4
.6

e
+

0
8

 4
.7

e
+

0
8

 4
.8

e
+

0
8

 4
.9

e
+

0
8

 5
e

+
0

8

T
im

e
(s

)

Edges in dense subgraphs

Arabic-2005

URL-T-1000
BFS-T-1000

CLLP-T-1000

CHash-T-1000
URL-FT-1000
BFS-FT-1000

CLLP-FT-1000
CHash-FT-1000

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 4
e

+
0

8

 4
.2

e
+

0
8

 4
.4

e
+

0
8

 4
.6

e
+

0
8

 4
.8

e
+

0
8

 5
e

+
0

8

 5
.2

e
+

0
8

 5
.4

e
+

0
8

 5
.6

e
+

0
8

T
im

e
(s

)

Edges in dense subgraphs

Arabic-2005

URL-T-5000
BFS-T-5000

CLLP-T-5000

CHash-T-5000
URL-FT-5000
BFS-FT-5000

CLLP-FT-5000
CHash-FT-5000

Figure 2. CPU time required for listing edges participating on dense subgraphs in Web Graphs using algorithms T and FT and different stream orders
for w = 1000 (left charts) and w = 5000 (right charts).

 0

 50

 100

 150

 200

 250

 300

 350

 0

 5
0

0
0

0
0

 1
e

+
0

6

 1
.5

e
+

0
6

 2
e

+
0

6

 2
.5

e
+

0
6

 3
e

+
0

6

T
im

e
(s

)

Edges in dense subgraphs

Dblp-2011

URL-T-1000
BFS-T-1000

CLLP-T-1000

CHASH-T-1000
URL-FT-1000
BFS-FT-1000

CLLP-FT-1000
CHASH-FT-1000

 0

 100

 200

 300

 400

 500

 600

 700

 0

 5
0

0
0

0
0

 1
e

+
0

6

 1
.5

e
+

0
6

 2
e

+
0

6

 2
.5

e
+

0
6

 3
e

+
0

6

T
im

e
(s

)

Edges in dense subgraphs

Dblp-2011

URL-T-5000
BFS-T-5000

CLLP-T-5000

CHASH-T-5000
URL-FT-5000
BFS-FT-5000

CLLP-FT-5000
CHASH-FT-5000

 0

 500

 1000

 1500

 2000

 2500

 3000

 4
e

+
0

6

 6
e

+
0

6

 8
e

+
0

6

 1
e

+
0

7

 1
.2

e
+

0
7

 1
.4

e
+

0
7

 1
.6

e
+

0
7

 1
.8

e
+

0
7

T
im

e
(s

)

Edges in dense subgraphs

LiveJournal-2008

URL-T-1000
BFS-T-1000

CLLP-T-1000

CHASH-T-1000
URL-FT-1000
BFS-FT-1000

CLLP-FT-1000
CHASH-FT-1000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2
e

+
0

6

 4
e

+
0

6

 6
e

+
0

6

 8
e

+
0

6

 1
e

+
0

7

 1
.2

e
+

0
7

 1
.4

e
+

0
7

 1
.6

e
+

0
7

 1
.8

e
+

0
7

T
im

e
(s

)

Edges in dense subgraphs

LiveJournal-2008

URL-T-5000
BFS-T-5000

CLLP-T-5000

CHASH-T-5000
URL-FT-5000
BFS-FT-5000

CLLP-FT-5000
CHASH-FT-5000

Figure 3. CPU time required for listing edges participating on dense subgraphs in social networks using algorithms T and FT and different stream orders
for w = 1000 (left charts) and w = 5000 (right charts).

sponding algorithm and the execution time of the in-memory

algorithm.

We observe in Table II that our external memory algorithm

preserves the quality of the in-memory algorithm, using

between 53 and 74% of the memory, but doubling running

times. Comparing with the in-memory algorithm, we show

that for Web graphs, the streaming algorithm (FT) with

CLLP order uses between 17 and 25% of the memory

between 34 and 65% of the running time, a speedup between

1.21 and 2.15, and achieves between 70 and 96% of the

edges in dense subgraphs. However, on social networks the

heuristic is less effective being able to retrieve between 40

and 67% of the edges in dense subgraphs, which shows that

it pays off to reorder the graph (as in the in-memory algo-

rithm) after each iteration in order to find more subgraphs.

VIII. APPLICATION: COMPRESSION

The results of listing dense subgraphs can be used for

different applications. Here we consider using them for com-

pressing Web graphs and social networks. We represent the

collection of dense subgraphs using compact data structures

via a symbol sequence and a compressed bitmap. Definitions

5 and 6 describe how dense subgraphs can be used to

compress graphs.

Definition 5: Let G(V,E) be a directed graph, and let

H(Sr, Cr) be edge-disjoint dense subgraphs of G. Then the

corresponding compressed representation of G is (H,R),
where H = {H(S1, C1), . . . , H(SN , CN)} and R = G −⋃

H(Sr, Cr) is the remaining graph.

Definition 6: Let H = {H1, . . . , HN} be the dense

subgraph collection found in the graph. We represent H as

a sequence of integers X with a corresponding bitmap B.

Sequence X = X1 : X2 : . . . : XN represents the sequence

of dense subgraphs and bitmap B = B1 : B2 : . . . BN

is used to mark the separation between each subgraph. We

now describe how a given Xr and Br represent the dense

subgraph Hr = H(Sr, Cr).

We define Xr and Br based on the overlapping between

the sets S and C. Sequence Xr will have three components:

L, Q, and R, written one after the other in this order.

Component L lists the elements of S − C. Component Q
lists the elements of S ∩ C. Finally, component R lists

the elements of C − S. Bitmap Br = 10|L|10|Q|10|R|

gives alignment information to determine the limits of the

components. In this way, we avoid repeating nodes in the

intersection, and have sufficient information to determine

all the edges of the dense subgraph. In other words, this

Datasets

Metric Order Eu-2005 Indochina-

2004

Uk-2002 Arabic-2005 Dblp-2011 LiveJournal-

2008

Memory
ratio

URL 0.24 0.19 0.19 0.21 0.07 0.12
BFS 0.21 0.16 0.16 0.19 0.30 0.10

CLLP 0.25 0.17 0.21 0.24 0.32 0.19
CHASH 0.26 0.23 0.20 0.26 0.20 0.10
Extmem 0.59 0.74 0.57 0.53 0.71 0.70

Edge
ratio

URL 0.84 0.71 0.96 0.92 0.04 0.30
BFS 0.82 0.68 0.93 0.92 0.57 0.28

CLLP 0.88 0.70 0.96 0.94 0.67 0.40
CHASH 0.86 0.70 0.96 0.94 0.30 0.30
Extmem 1.00 1.00 1.00 1.00 1.00 1.00

Time
ratio

URL 0.69 0.34 0.63 0.70 1.25 0.38
BFS 0.72 0.35 0.66 0.63 0.49 0.47

CLLP 0.65 0.34 0.63 0.59 0.46 0.29
CHASH 0.63 0.31 0.55 0.56 0.72 0.37
Extmem 2.18 1.82 2.90 2.48 2.40 1.99

Speedup

URL 1.07 2.17 1.48 1.52 0.03 0.79
BFS 1.01 2.05 1.38 1.70 1.15 0.60

CLLP 1.21 2.15 1.48 1.83 1.47 1.36
CHASH 1.20 2.36 1.72 1.92 0.41 0.81

Table II
FT STREAMING HEURISTIC WITH RESPECT TO IN-MEMORY ALGORITHM. Speedup =

OurAlg.Edges/secs
InMemoryAlg.Edges/secs

.

representation allows us to use a sequence X which length

is given by |X| = ∑
r |Sr|+ |Cr| − |Sr ∩ Cr|.

Definition 6 describes the compact representation of H
using a symbol sequence and a bitmap. The remaining

graph R, in Definition 5, can be compressed using any

other compression technique. Here we only show how to

compress H and provide experimental results for that. In

order to achieve compression we represent our sequence X
and bitmap B using compact data structures. We use Wavelet

Trees (WT) [13] using the implementation without pointers

[6] for representing the integer sequence X , and compressed

bitmaps [20] for the bitmap B. We use the compact data

structure, libcds, implementation library version 1.0 avail-

able at http://www.github.com/fclaude/libcds.

Table III shows some statistics of the listed dense sub-

graphs using the streaming algorithm FT and CLLP stream

order with 5 iterations. We show the distribution of cliques,

bicliques and other dense subgraphs with their corresponding

average size.

Table IV shows the edge representation in the dense

subgraph collection. INMEM shows the percentage of edges

captured by the streaming algorithm (FT) using CLLP

stream order with respect to the total of edges captured by

the in-memory algorithm. RE is the percentage of edges

captured by FT with respect to the total number of edges

of the graph. Table IV also shows the compression effi-

ciency achieved by the compact representation of the dense

subgraphs found using the FT streaming algorithm with 5

iterations. Compression is given by bpe (bits per edge) which

corresponds to the space (in bits) of the compact structure

of the dense subgraph collection divided by total number of

edges in the collection.

Dataset % CL size % BI size % DS size

Eu-2005 4.85 9.95 47.28 22.08 47.85 21.99

Indochina 6.24 5.98 37.61 25.42 56.13 22.94

Uk-2002 3.22 5.31 42.61 20.13 54.16 25.12

Arabic-2005 3.05 5.31 48.06 25.27 48.87 25.83

Dblp-2011 18.27 4.00 11.74 8.30 69.98 6.00

LiveJournal-2008 2.92 3.50 45.44 8.42 51.63 7.95

Table III
PERCENTAGE OF CLIQUES (CL), BICLIQUES (BI), AND THE REST OF

DENSE GRAPHS (DS) FOUND, WITH CORRESPONDING AVERAGE SIZE.

Data Set INMEM (%) RE (%) bpe

Eu-2005 88.1 81.0 1.68

Indochina 70.2 66.0 1.26

Uk-2002 96.0 87.2 1.60

Arabic-2005 94.0 88.4 1.27

Dblp-2011 67.6 43.1 5.64

LiveJournal-2008 40.3 18.2 7.95

Table IV
EDGE REPRESENTATION AND COMPRESSION EFFICIENCY IN H.

IX. CONCLUSIONS

This paper proposes an external memory algorithm for

finding and listing dense subgraphs in Web and social

graphs. The algorithm preserves the quality of the in-

memory algorithm, it reduces memory usage, but double

the CPU time. We also present a streaming mining heuristic

that takes advantage of the similarity and locality of ref-

erence that provide some graph stream orders. We provide

experimental evaluation that shows that on Web graphs, in

comparison with the in-memory algorithm, the streaming

mining heuristic FT using CLLP stream order is able to

find between 70 and 96% of edges participating in dense

subgraphs, uses only between 17 and 25% of the memory,

CPU times are between 34 and 65%, and provides a speedup

on Edges/secs between 1.21 and 2.15. However, the results

show that on social graphs the streaming algorithm is less

effective as we are able to find between 40 and 67% of

the edges, using between 19 and 32% of memory, CPU

times between 29 and 46%, and a speedup between 1.36 and

1.47. Furthermore, we show an effective way of compressing

listed dense subgraphs using compact data structures.

REFERENCES

[1] C. C. Aggarwal, Y. Li, P.S. Yu, R. Jin. On Dense pattern mining
in graph streams, PVLDB, 2010, 3(1), pp. 975–984.

[2] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the
streaming model augmented with a sorting primitive, FOCS,
2004, pp. 540–549.

[3] P. Boldi and M. Rosa, M. Santini, S. Vigna. Layered label
propagation: a multiresolution coordinate-free ordering for
compressing social networks, WWW, 2011, pp.587–596.

[4] A.Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher.
Min-Wise independent permutations, J. Comput. Syst. Sci.,
60(3), 2000, pp. 630–659.

[5] G. Buehrer and K. Chellapilla. A scalable pattern mining ap-
proach to Web graph compression with communities, WSDM,
2008, pp. 95–106.

[6] F.Claude and G. Navarro. Practical rank/select queries over
arbitrary sequences, SPIRE, 2008, pp. 176–187.

[7] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for
maximal clique enumeration with limited memory, SIGKDD,
2012, pp. 1240–1248.

[8] C. Demetrescu, and I. Finocchi, and A. Ribichini. Trading
off space for passes in graph streaming problems, ACM
Transactions on Algorithms, 6(1), 2009.

[9] D. Donato, S. Leonardi, S. Millozzi, and P. Tsaparas. Mining
the inner structure of the Web graph, WebDB, 2005, pp. 145–
150.

[10] J. Feigenbaum and S. Kannan and A. McGregor and S. Suri
and J. Zhang. On graph problems in a semi-streaming model,
J. Theor. Comput. Sci., 348(2-3), pp. 207–216, 2005.

[11] H. Garcia-Molina, J. Ullman, and J. Widom. Database sys-
tems - the complete book, Prentice Hall Press, Upper Saddle
River, NJ, USA, 1 edition, 2002.

[12] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs, VLDB, 2005, pp. 721–
732.

[13] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-
compressed text indexes, SODA, 2003, pp. 841–850.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Trawling the Web for emerging cyber-communities, Computer
Networks, 1999, 31(11-16), pp. 1481–1491.

[15] C. Hernández, and G. Navarro. Compressed Representation of
Web and Social Networks via Dense Subgraphs, SPIRE, 2012,
pp. 264–276.

[16] C. Hernández, and G. Navarro. Compressed representations
for Web and social graphs, Knowl. Inf. Syst. 40(2), 2014,
pp. 279–313.

[17] I. Katriel, and U. Meyer. Elementary graph algorithms in
external memory, Algorithms for Memory Hierarchies, 2002,
pp. 62–84.

[18] I. Munro, and M. Paterson. Selection and sorting with limited
storage, Theor. Comput. Sci., 1980, (12), pp. 315–323.

[19] S. Muthukrishnan. Data Streams: Algorithms and applica-
tions, Foundations and Trends in Theoretical Computer Sci-
ence, (2), 2005.

[20] R. Raman, V. Raman, S.S. Rao. Succinct indexable dictio-
naries with applications to encoding k-ary trees and multisets,
SODA, 2002, pp. 233–242.

[21] M. Ruhl, Efficient algorithms for new computational models,
PhD. Thesis, MIT, 2001.

[22] H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A
large-scale study of Link spam detection by graph algorithms,
AIRWEB, 2007.

[23] R. Samudrala and J. Moult. A graph-theoretic algorithm
for comparative modeling of protein structure, Journal of
Molecular Biology, 279(1), 1998, pp. 287–302.

[24] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü.
V. Çatalyürek. Streaming algorithms for k-core decomposition,
PVLDB, 2013, 6(6), pp. 433–444.

[25] I. Stanton, and G. Kliot. Streaming graph partitioning for
large distributed graphs, SIGKDD, 2012, pp. 1222–1230.

[26] J.C Vitter. External memory algorithms and data structures,
ACM Comput. Surv., 2(33), 2001, pp. 209–271.

[27] J. Zhang. A survey on streaming algorithms for massive
graphs, Advances in Database Systems, Springer US, pp. 393–
420.

[28] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow,
England: Addison-Wesley, 1999.

